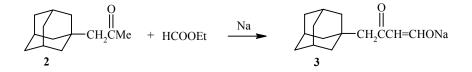
SYNTHESES OF HETEROCYCLES FROM THE SODIUM SALTS OF 3-(1-ADAMANTYL)-1-HYDROXY-1-PROPEN-3-ONE AND 4-(1-ADAMANTYL)-1-HYDROXY-1-BUTEN-3-ONE

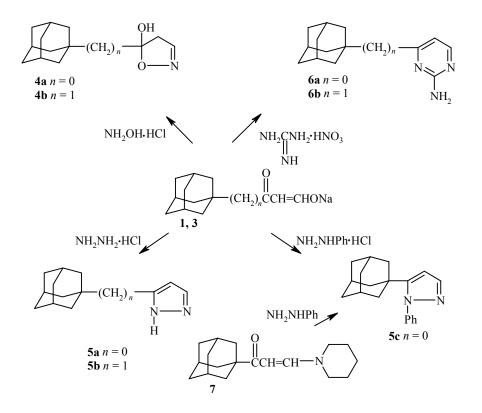
N. V. Makarova, M. N. Zemtsova, and I. K. Moiseev


The interaction of the sodium salts of 3-(1-adamantyl)-1-hydroxy-1-propen-3-one and 4-(1-adamantyl)-1-hydroxy-1-buten-3-one with hydroxylamine, hydrazine, and guanidine leads to the synthesis of 5-(1-adamantyl)-5-hydroxy- and 5-(1-adamantylmethyl)-5-hydroxy- Δ^2 -isoxazolines, 3-(1-adamantyl)-and 3-(1-adamantylmethyl)pyrazoles, 3-(1-adamantyl)-2-phenylpyrazole, and 4-(1-adamantyl)-2-amino- and 4-(1-adamantylmethyl)-2-aminopyrimidines.

Keywords: (1-adamantyl)acetone, 2-aminopyrimidines, 5-hydroxy- Δ^2 -isoxazolines, 3-(1-adamantyl)-1-hydroxy-1-propen-3-one sodium salt, 4-(1-adamantyl)-1-hydroxy-1-buten-3-one sodium salt, pyrazoles, cyclization.

Scores of heterocyclic compounds from simple four-membered rings to the most complex condensed heterocyclic systems have been obtained from β -chloro- and β -aminovinyl ketones. The sodium salts of 3-R-1-hydroxy-1-propen-3-ones are infrequently used in syntheses of heterocycles [1-3]. For example, syntheses of 6,7-dihydroxy-1,2,3,4-tetrahydroisoquinolines [1], furans [2], and 2-pyridones [3] have been described.

The sodium salt of 3-(1-adamantyl)-1-hydroxy-1-propen-3-one (1) has been used successfully in the synthesis of 6-(1-adamantyl)-3-cyano-2(1H)-pyridinones, thiones, and selenones [4-8]. This reaction has also been extended to aromatic [9] and unsaturated [10] compounds. The sodium salt 1 was obtained by the interaction of methyl (1-adamantyl) ketone with ethyl formate and sodium in ether [5,6].


Based on this reaction we have synthesized the sodium salt of 4-(1-adamantyl)-1-hydroxy-1-buten-3-one (3) from (1-adamantyl)acetone (2). Compound 3 is unstable, decomposing in the air in a few days and has a high melting point.

In a continuation of studies on the synthesis of adamantane-containing heterocycles [11,12], the reaction of sodium salts 1 and 3 with the hydrochlorides of hydroxylamine, hydrazine, and phenylhydrazine, and guanidine nitrate by boiling in 50% aqueous ethanol gave 5-(1-adamantyl)-5-hydroxy- (4a) and

Samara State Technical University, Samara 443100, Russia. Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 7, pp. 912-915, July, 2001. Original article submitted August 2, 1999.

 $5-(1-adamantylmethyl)-5-hydroxy-\Delta^2-isoxazolines$ (4b), 5-(1-adamantyl)- (5a) and 5-(1-adamantylmethyl)-pyrazoles (5b), 5-(1-adamantyl)-1-phenylpyrazole (5c), and 4-(1-adamantyl)-2-amino- (6a) and 4-(1-adamantylmethyl)-2-aminopyrimidines (6b).

In addition, pyrazole **5c** was obtained from 3-(1-adamantyl)-1-piperidino-1-propen-3-one (7) and phenylhydrazine by boiling in acetic acid. The β -aminovinyl ketone 7 was obtained by the reaction of salt **1** with piperidine hydrochloride. The physicochemical characteristics of the synthesized compounds and data of their IR and ¹H NMR spectra are given in Tables 1 and 2.

Com- pound	Empirical formula		Found, % alculated, 9		mp, °C	R_{f}^{*}	Yield, %
		C	СН				
4a	$C_{13}H_{19}NO_2$	<u>70.61</u> 70.56	<u>8.65</u> 8.65	<u>6.30</u> 6.33	160-162	0.79 ^a	41
4b	$C_{14}H_{21}NO_2 \\$	$\frac{71.50}{71.46}$	<u>9.00</u> 8.99	$\frac{6.00}{5.95}$	88-89	0.48 ^a	42
5a	$C_{13}H_{18}N_2$	<u>77.13</u> 77.18	$\frac{9.00}{8.97}$	$\frac{13.80}{13.85}$	128-129	0.86 ^b	77
5b	$C_{14}H_{20}N_2$	<u>77.60</u> 77.73	<u>9.21</u> 9.32	$\frac{12.93}{12.95}$	184-186	0.37 ^a	72
5c	$C_{19}H_{22}N_2$	$\frac{82.00}{81.97}$	<u>7.91</u> 7.97	$\frac{10.16}{10.06}$	130-132	0.54°	59
6a	$C_{14}H_{19}N_3$	$\frac{73.35}{73.32}$	$\frac{8.40}{8.35}$	$\frac{18.25}{18.32}$	45-47	0.70 ^b	50
6b	$C_{15}H_{21}N_3$	$\frac{74.00}{74.03}$	$\frac{8.68}{8.70}$	$\frac{17.20}{17.27}$	190-192	0.74 ^a	70

TABLE 1. Physicochemical Characteristics of the Synthesized Heterocycles

* Eluent acetone–CCl₄: a) 1:4; b) 1:2; c) 1:6.

Com-	IR spectra, v, cm ⁻¹			¹ H NMR, δ, ppm					
pound	C=N	CH_{2Ad}	ОН	NH/ NH2	6CH _{2 Ad} (12H)	3CH _{Ad} (3H)	Ad <u>CH</u> ₂ (2H)	$\mathrm{H}_{\mathrm{Het}}$	other protons
4 a	1620	2850, 2900	3330	_	1.70, d	2.00, s	—	3.45 (2H, d, CH ₂), 8.25 (1H, t, C=N)	10.10 (1H, s, OH)
4b	1640	2850, 2900	3400	—	1.65, d	1.95, s	2.50, s	3.30 (2H, d, CH ₂), 8.40 (1H, t, C=N)	11.20 (1H, s, OH)
5a	1610	2850, 2900	—	3000	1.70, d	1.95, s		5.90 (1H, d, H-4), 7.30 (1H, d, H-5)	14.45 (1H, s, NH)
5b	1600	2850, 2900	—	3100	1.70, d	1.95, s	2.45, s	5.90 (1H, d, H-4), 7.30 (1H, d, H-5)	14.45 (1H, s, NH)
5c	1610	2850, 2900	—	—					
6a	1640	2850, 2900		3300	1.70, d	1.90, s		6.42 (1H, d, H-5 _{pyrimidine}), 8.08 (1H, d, H-6 _{pyrimidine})	6.05 (2H, br. s, NH ₂)
6b	1580	2850, 2900	_	3320	1.70, d	1.95, s	2.40, s	6.42 (1H, d, H-5 _{pyrimidine}), 8.08 (1H, d, H-6 _{pyrimidine})	6.05 (2H,br. s, NH ₂)

TABLE 2. IR and ¹H NMR Spectra of the Synthesized Heterocycles

The reaction of the sodium salts of compounds 1 and 3 with hydroxylamine, hydrazine, and guanidine has therefore led to the synthesis of 5-(1-adamantyl)-5-hydroxy- and 5-(1-adamantylmethyl)-5-hydroxy- Δ^3 -isoxazolines, 3-(1-adamantyl)- and 3-(1-adamantylmethyl)pyrazoles, 3-(1-adamantyl)-2-phenylpyrazoles, and 4-(1-adamantyl)-2-amino- and 4-(1-adamantylmethyl)-2-aminopyrimidines. In the proposed procedure the use of readily oxidizable bases of nitrogen-containing compounds has been avoided which enables the desired compounds to be obtained in high yield.

EXPERIMENTAL

The ¹H NMR spectra were taken on a Bruker AC 300 (300.13 MHz) in DMSO-d₆, internal standard was HMDS. The IR spectra were taken on a Specord M 80 instrument in KBr disks. The purity of compounds was checked by TLC (Silufol UV 254, visualization in iodine vapor).

General Procedure for the Synthesis of Heterocycles (4-6). A solution of sodium salt 1 or 3 (2.2 mmol) and hydroxylamine hydrochloride (hydrazine hydrochloride, guanidine nitrate) (2.2 mmol) in 50% ethyl alcohol (10 ml) was boiled for 4-15 h until precipitation of the desired heterocycle. The solid was filtered off and recrystallized from alcohol.

3-(1-Adamantyl)-1-piperidino-1-propen-3-one (7). A solution of the sodium salt **1** and piperidine hydrochloride (0.27 g, 2.2 mmol) in 50% ethyl alcohol (10 ml) was boiled for 12 h. The precipitated solid was filtered off and recrystallized from alcohol. Yield 91%; mp 168-170°C, R_f 0.31 (acetonitrile). IR spectrum, v, cm⁻¹: 2860 and 2910 (CH₂ adamant.), 1660 (C=O). ¹H NMR spectrum, δ , ppm: 1.25 (2H, m, *p*-H piperidyl); 1.55 (4H, m, *m*-H piperidyl); 1.70 (12H, d, CH₂ adamant.); 1.95 (3H, s, CH adamant.); 2.30 (4H, m, *o*-H piperidyl); 4.95 (1H, d, CHN); 7.25 (1H, d, CHCO). Found, %: C 78.86; H 9.64; N 5.23. C₁₈H₂₇NO. Calculated, %: C 79.07; H 9.95; N 5.12.

3-(1-Adamantyl)-2-phenylpyrazole (5c). A solution of β -aminovinyl ketone 7 (0.5 g, 1.8 mmol) and phenylhydrazine (0.27 ml, 2.7 mmol) in glacial acetic acid (10 ml) was boiled for 8 h. The reaction mixture was poured onto ice, the solid was filtered off, and recrystallized from alcohol.

REFERENCES

- 1. R. N. Schut, *Chem. and Ind.*, 1246 (1960).
- 2. M. Valenta, Coll. Czech. Chem. Commun., 32, 897 (1967).
- 3. P. Nantka-Namirski and L. Kaszmarek, Acta Pol. Pharm., 34, 133 (1977).
- 4. V. P. Litvinov, E. E. Apenova, and Yu. A. Sharanin, Izv. Akad. Nauk SSSR, Ser. Khim., 2408 (1984).
- 5. V. P. Litvinov, E. E. Apenova, and Yu. A. Sharanin, Izv. Akad. Nauk SSSR, Ser. Khim., 145 (1986).
- 6. E. E. Apenova, Yu. A. Sharanin, B. M. Zolotarev, and V. P. Litvinov, *Izv. Akad. Nauk SSSR, Ser. Khim.*, 406 (1986).
- 7. V. P. Litvinov, E. E. Apenova, and Yu. A. Sharanin, Izv. Akad. Nauk SSSR, Ser. Khim., 386 (1987).
- 8. V. Yu. Mortikov, V. P. Litvinov, and A. M. Shestopalov, *Khim.-farm. Zh.*, No. 5, 41 (1991).
- 9. L. A. Rodinovskaya, V. K. Promonenkov, and Yu. A. Sharanin, Zh. Org. Khim., 21, 1578 (1985).
- 10. N. G. Frolova, V. K. Zav'yalova, and V. P. Litvinov, Zh. Org. Khim., 33, 291 (1997).
- 11. N. V. Makarova, M. N. Zemtsova, and I. K. Moiseev, *Khim. Geterotsikl. Soedin.*, 1580 (1993).
- 12. N. V. Makarova, M. N. Zemtsova, and I. K. Moiseev, Khim. Geterotsikl. Soedin., 130 (1995).